Probing the Early Universe with Galaxy Clustering

Fabian Schmidt

with Francis Cyr-Racine, Vincent Desjacques, Donghui Jeong, Marc Kamionkowski,

Emiliano Sefusatti

LIFORNIA

Introduction

Pictorial history of the Universe

Introduction

- What we would like to know
 - Expansion history H(z) of background Universe
 - Origin and evolution of perturbations

Perturbations

- Origin of initial density perturbations in the Universe?
 - Inflation most popular scenario
 - Determining physics & energy scale (10³ 10¹⁹ GeV) of inflation is (one) holy grail of cosmology

Perturbations

- Origin of initial density perturbations in the Universe?
 - Inflation most popular scenario
 - Determining physics & energy scale (10³ 10¹⁹ GeV) of inflation is (one) holy grail of cosmology

- Evolution of perturbations
 - CMB -> snapshot at z~1100
 - Subsequent evolution determined by gravity
 --> probe dark matter, General Relativity

Perturbations

 Origin of initial density perturbations in the Universe?

Focus of this talk

- Inflation most popular scenario
- Determining physics & energy scale (10³ 10¹⁹ GeV) of inflation is (one) holy grail of cosmology

- Evolution of perturbations
 - CMB -> snapshot at z~1100
 - Subsequent evolution determined by gravity
 --> probe dark matter, General Relativity

Aside: a new approach to weak lensing

- Standard approach: shear γ
 - measured through galaxy shapes
- Idea: measure magnification (convergence κ)
 - using galaxy fluxes/sizes
- Additional signal-to-noise / lensing information
 - κ and γ measure *different quantities:*

$$\kappa(\vec{r}) = \Sigma(\vec{r})/\Sigma_{\rm crit}$$

$$\gamma(r) = (\bar{\Sigma}(< r) - \Sigma(r))/\Sigma_{\rm crit}$$

 Σ : projected surface mass density

Magnification effect

Magnification effect

Magnification effect

 Approximate unlensed distribution as bivariate Gaussian in In d, m

- Approximate unlensed distribution as bivariate Gaussian in In d, m
 - → Gaussian likelihood for κ
 - Here: d = RRG variable width Gaussian filtered
 m = SExtractor F814w
 - Both from Hubble ACS data

- Approximate unlensed distribution as bivariate Gaussian in In d, m
 - → Gaussian likelihood for κ
 - Here: d = RRG variable width Gaussian filtered
 m = SExtractor F814w
 - Both from Hubble ACS data
 - Take into account lensing efficiency & "lensing bias", redshift, size, and magnitude measurement errors

- Approximate unlensed distribution as bivariate Gaussian in In d, m
 - → Gaussian likelihood for κ
 - Here: d = RRG variable width Gaussian filtered
 m = SExtractor F814w
 - Both from Hubble ACS data
 - Take into account lensing efficiency & "lensing bias", redshift, size, and magnitude measurement errors
- Estimator does not use number density of sources

Magnification around X-ray groups in COSMOS

• Stacked group sample z=0.2-0.6

Detection significance:

- \sim 4 σ within r < 1 Mpc
- ~40% of shear

Inflation

- Phase of exponential expansion
 - "almost-de Sitter", driven e.g. by $V(\phi)$
 - Solves problems of flatness and "superhorizon" correlations

Inflation

- Phase of exponential expansion
 - "almost-de Sitter", driven e.g. by $V(\phi)$
 - Solves problems of flatness and "superhorizon" correlations

Inflation

- Phase of exponential expansion
 - "almost-de Sitter", driven e.g. by $V(\phi)$
 - Solves problems of flatness and "superhorizon" correlations

18

- Quantum fluctuations "freeze" once outside the horizon
 - Analogous to Hawking radiation
 - We observe them once they re-enter the horizon

time

- Generic prediction:
 - almost-Gaussian fluctuations
 - smooth, almost scale-invariant power spectrum (two-point correlation)

- Generic prediction:
 - almost-Gaussian fluctuations
 - smooth, almost scale-invariant power spectrum (two-point correlation)
- All information* on inflation is encoded in departures from Gaussianity & scale-invariance
 - So far: one number $n_s-1 \approx -0.04 \pm 0.01$

* in scalar modes. There might be detectable gravitational waves.

- Departures from Gaussianity (= non-Gaussianity) in principle contains much more information
 - Amount and form of NG depends on detailed physics of inflation:
 - Inflaton interactions, sound speed, single-field vs multi-field, initial quantum state, ...

- Departures from Gaussianity (= non-Gaussianity) in principle contains much more information
 - Amount and form of NG depends on detailed physics of inflation:
 - Inflaton interactions, sound speed, single-field vs multi-field, initial quantum state, ...

 Goal of this talk: describe how we can measure this from galaxy surveys

Motivation: Halo clustering with *local NG*

Effect on halo power spectrum from simulations

$$\frac{\Delta P_g(k)}{P_g(k)} = 2\frac{\Delta b(k)}{b} \propto k^{-2}$$

Current constraints from SDSS:

$$|f_{\mathrm{NL}}^{\mathrm{loc}}| \lesssim 90$$

Comparable to
 CMB constraints

Statistical description

 A Gaussian field φ is completely described by its power spectrum:

$$\langle \phi(\vec{k})\phi(\vec{k}')\rangle = (2\pi)^3 \delta_D(\vec{k} + \vec{k}') P_{\phi}(k)$$

Different Fourier modes are uncorrelated

Statistical description

 A Gaussian field φ is completely described by its power spectrum:

$$\langle \phi(\vec{k})\phi(\vec{k}')\rangle = (2\pi)^3 \delta_D(\vec{k} + \vec{k}') P_{\phi}(k)$$

- Different Fourier modes are uncorrelated
- $\phi=3\zeta/5$ Bardeen potential during matter domination = Newtonian potential on large scales

Statistical description

 A Gaussian field φ is completely described by its power spectrum:

$$\langle \phi(\vec{k})\phi(\vec{k}')\rangle = (2\pi)^3 \delta_D(\vec{k} + \vec{k}') P_{\phi}(k)$$

- In non-Gaussian (NG) case, all higher point correlations non-zero
 - However, $\phi \sim 10^{-5}$ perturbative expansion

Either via bispectrum

$$\langle \hat{\phi}(\vec{k}_1)\hat{\phi}(\vec{k}_2)\hat{\phi}(\vec{k}_3)\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\phi}(k_1, k_2, k_3)$$

Either via bispectrum

$$\langle \hat{\phi}(\vec{k}_1)\hat{\phi}(\vec{k}_2)\hat{\phi}(\vec{k}_3)\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\phi}(k_1, k_2, k_3)$$

Used for CMB constraints

Either via bispectrum

$$\langle \hat{\phi}(\vec{k}_1)\hat{\phi}(\vec{k}_2)\hat{\phi}(\vec{k}_3)\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\phi}(k_1, k_2, k_3)$$

Used for CMB constraints

Or via field redefinition

$$\hat{\phi}(\vec{k}) = \phi(\vec{k}) + f_{\rm NL} \int \frac{d^3\vec{k}_1}{(2\pi)^3} \; \omega(\vec{k}_1,\vec{k}-\vec{k}_1) \phi(\vec{k}_1) \phi(\vec{k}-\vec{k}_1)$$
 Gaussian random field

Physical, non-Gaussian field

Either via bispectrum

$$\langle \hat{\phi}(\vec{k}_1)\hat{\phi}(\vec{k}_2)\hat{\phi}(\vec{k}_3)\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\phi}(k_1, k_2, k_3)$$

Used for CMB constraints

Or via field redefinition

$$\hat{\phi}(\vec{k}) = \phi(\vec{k}) + f_{\rm NL} \int \frac{d^3\vec{k}_1}{(2\pi)^3} \, \omega(\vec{k}_1, \vec{k} - \vec{k}_1) \phi(\vec{k}_1) \phi(\vec{k} - \vec{k}_1)$$
 Amplitude parameter "Shape"

Either via bispectrum

$$\langle \hat{\phi}(\vec{k}_1)\hat{\phi}(\vec{k}_2)\hat{\phi}(\vec{k}_3)\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\phi}(k_1, k_2, k_3)$$

Used for CMB constraints

Or via field redefinition

$$\hat{\phi}(\vec{k}) = \phi(\vec{k}) + f_{\text{NL}} \int \frac{d^3 \vec{k}_1}{(2\pi)^3} \,\omega(\vec{k}_1, \vec{k} - \vec{k}_1) \phi(\vec{k}_1) \phi(\vec{k} - \vec{k}_1)$$

Used for initializing N-body simulations

Either via bispectrum

$$\langle \hat{\phi}(\vec{k}_1)\hat{\phi}(\vec{k}_2)\hat{\phi}(\vec{k}_3)\rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)B_{\phi}(k_1, k_2, k_3)$$

Used for CMB constraints

Or via field redefinition

$$\hat{\phi}(\vec{k}) = \phi(\vec{k}) + f_{\text{NL}} \int \frac{d^3 \vec{k}_1}{(2\pi)^3} \,\omega(\vec{k}_1, \vec{k} - \vec{k}_1) \phi(\vec{k}_1) \phi(\vec{k} - \vec{k}_1)$$

- Local model:
$$\hat{\phi}(\vec{x}) = \phi(\vec{x}) + f_{\rm NL}\phi^2(\vec{x})$$
 $\Leftrightarrow \omega(\vec{k}_1,\vec{k}_2) = 1$

Large Scale Structure

We observe this

(dramatization)

Large Scale Structure

Large Scale Structure

- Key theoretical problem:
 - how to map initial linear fluctuations to observed non-linear density field of tracers (on large scales)

Large Scale Structure

- We need to map
 - linear matter overdensity $\delta = \frac{\delta \rho_m}{\overline{\rho}_m}$
 - to *galaxy* overdensity δ_g

Large Scale Structure

- We need to map
 - linear matter overdensity $\delta = \frac{\delta \rho_m}{\overline{\rho}_m}$
 - to *galaxy* overdensity δ_g

- In the following, focus on halos:
 - collapsed, virialized dark matter structures
 - Easy comparison with N-body simulations

(initial, linear)

• Write perturbations* as: $\delta = \delta_l + \delta_s, \; \phi = \phi_l + \phi_s, \; ...$

*Work in synchronous gauge

(initial, linear)

• Write perturbations* as: $\delta = \delta_l + \delta_s, \ \phi = \phi_l + \phi_s, \ ...$

"I": scales on which clustering is measured

*Work in synchronous gauge

• Write perturbations as: $\delta = \delta_l + \delta_s, \ \phi = \phi_l + \phi_s, \ ...$

• Definition of bias:
$$b_1 = \frac{\partial \ln n_h}{\partial \delta_l} - 1$$

Lagrangian bias

 n_h : halo number density per ln M

• Write perturbations as: $\delta = \delta_l + \delta_s, \ \phi = \phi_l + \phi_s, \ ...$

• Definition of bias:
$$b_1 = \frac{\partial \ln n_h}{\partial \delta_l} - 1$$

- Halo power spectrum: $P_h(k) = b_1^2 P(k) + ...$

corrections relevant on small scales

• Write perturbations as: $\delta = \delta_l + \delta_s, \ \phi = \phi_l + \phi_s, \ ...$

• Definition of bias:
$$b_1 = \frac{\partial \ln n_h}{\partial \delta_l} - 1$$

- Halo power spectrum: $P_h(k) = b_1^2 P(k) + ...$ corrections relevant on small scales
- n_h depends on $\rho_{m,l}$ and matter power spectrum
 - Simplest case: through variance on mass scale M, σ_M^2
 - assume universal mass function for explicit expressions

Halo Bias in PBS

Mo & White 96

• Large-scale δ changes collapse threshold:

$$\delta_c \to \delta_c - \delta_l \quad \Rightarrow \quad b_1 = -\frac{\partial \ln n_h}{\partial \delta_c}$$

Halo Bias in PBS

• Large-scale δ changes collapse threshold:

$$\delta_c \to \delta_c - \delta_l \quad \Rightarrow \quad b_1 = -\frac{\partial \ln n_h}{\partial \delta_c}$$

Mo & White 96

Density field smoothed on (Lagrangian) scale of halos

Halo Bias in PBS

• Large-scale δ changes collapse threshold:

$$\delta_c \to \delta_c - \delta_l \quad \Rightarrow \quad b_1 = -\frac{\partial \ln n_h}{\partial \delta_c}$$

Mo & White 96

 $\delta + \delta_l$

Density field smoothed on (Lagrangian) scale of halos

Consider local non-Gaussianity:

$$\hat{\phi}(\vec{x}) = \phi(\vec{x}) + f_{\rm NL}\phi^2(\vec{x})$$

Consider local non-Gaussianity:

$$\hat{\phi}(\vec{x}) = \phi(\vec{x}) + f_{\rm NL}\phi^2(\vec{x})$$

Use Poisson equation, and do I-s-split:

$$\Rightarrow \hat{\delta}_s = \delta_s (1 + 2f_{\rm NL}\phi)$$

Consider local non-Gaussianity:

$$\hat{\phi}(\vec{x}) = \phi(\vec{x}) + f_{\rm NL}\phi^2(\vec{x})$$

Use Poisson equation, and do I-s-split:

$$\Rightarrow \hat{\delta}_s = \delta_s (1 + 2f_{\rm NL}\phi)$$

- Small-scale density field is rescaled by (longwavelength) potential perturbations
 - Variance on mass scale M:

Dalal et al, Slosar et al

$$\hat{\sigma}_M^2(\vec{x}) = \sigma_M^2 [1 + 4f_{\rm NL}\phi(\vec{x})]$$

$$\hat{\sigma}_M^2(\vec{x}) = \sigma_M^2 [1 + 4f_{\rm NL}\phi(\vec{x})]$$

$$\hat{\sigma}_M^2(\vec{x}) = \sigma_M^2 [1 + 4f_{\rm NL}\phi(\vec{x})]$$

General quadratic NG

 Straightforward to generalize for any quadratic non-Gaussianity:

$$\hat{\phi}(k) = \phi(k) + f_{\rm NL} \int \omega \, \phi \, \phi$$

General quadratic NG

 Straightforward to generalize for any quadratic non-Gaussianity:

$$\hat{\phi}(k) = \phi(k) + f_{\rm NL} \int \omega \, \phi \, \phi$$

$$\Rightarrow \hat{\sigma}_M^2 = \sigma_M^2 + 4f_{\rm NL}\sigma_{\omega M}^2(k)\phi(k)$$
 (for a single long-wavelength mode k)

$$\sigma_{\omega M}^2(k) \equiv \int\!\!\frac{d^3k_s}{(2\pi)^3}\,\omega(\vec{k},\vec{k}_s)W_M^2(k_s)P(k_s)$$
 Tophat filter of scale M

General quadratic NG

 Straightforward to generalize for any quadratic non-Gaussianity:

$$\hat{\phi}(k) = \phi(k) + f_{\mathrm{NL}} \int \omega \, \phi \, \phi$$

$$\Rightarrow \hat{\sigma}_M^2 = \sigma_M^2 + 4f_{\rm NL}\sigma_{\omega M}^2(k)\phi(k)$$
 (for a single long-wavelength mode k)

$$\sigma_{\omega M}^2(k) \equiv \int\!\!\frac{d^3k_s}{(2\pi)^3}\,\omega(\vec{k},\vec{k}_s)W_M^2(k_s)P(k_s)$$
 Tophat filter of scale M

 Note: coupling of potential with density in general depends on k and M

Non-Gaussian halo bias

- Just a matter of chain rule...
 - In standard formalism, $n_h = n_h(\rho_m, \sigma_M)$,

$$b_1 = \frac{\partial \ln n_h}{\partial \delta_l} - 1$$

Non-Gaussian halo bias

- Just a matter of chain rule...
 - In standard formalism, $n_h = n_h(\rho_m, \sigma_M)$,

$$b_1 = \frac{\partial \ln n_h}{\partial \delta_l} - 1$$

$$\Rightarrow \Delta b_1(k) = \frac{\partial \ln n_h}{\partial \ln \sigma_M} \frac{\partial \ln \sigma_M}{\partial \phi(k)} \frac{\partial \phi(k)}{\partial \delta_l(k)}$$
 Univ. mass function or simulations s.a. Linear perturbation theory

Non-Gaussian halo bias

- Just a matter of chain rule...
 - In standard formalism, $n_h = n_h(\rho_m, \sigma_M)$,

$$b_1 = \frac{\partial \ln n_h}{\partial \delta_l} - 1$$

$$\Rightarrow \Delta b_1(k) = \frac{\partial \ln n_h}{\partial \ln \sigma_M} \frac{\partial \ln \sigma_M}{\partial \phi(k)} \frac{\partial \phi(k)}{\partial \delta_l(k)} = 2 f_{\rm NL} \mathcal{M}^{-1}(\mathbf{k}) \ b_1 \delta_c \ \frac{\sigma_{\omega M}^2(\mathbf{k})}{\sigma_M^2}$$
 Univ. mass function or simulations s.a. Linear perturbation theory
$$= \mathcal{M}^{-1}(k) \qquad \qquad \mathcal{M}(k) = \frac{2}{3} \frac{k^2 T(k) g(z)}{\Omega_m H_0^2(1+z)}$$

Predictions for Δb

- Scale-invariant bispectra: $\omega(\vec{k}_s, \vec{k}) = C (k/k_s)^n$
- Examples:
 - Local model: $\omega \to 1 \Rightarrow \sigma_\omega^2 = \sigma_M^2 \Rightarrow \Delta b_1 \propto k^{-2}$

- Equilateral form: $\omega \propto k^2 \Rightarrow \Delta b_1 \approx \text{const.}$

- Folded form: $\omega \propto k \Rightarrow \Delta b_1 \propto k^{-1}$

Technical detail

- So far, considered effect of NG on $\nu = \delta_c/\sigma_M$
- Also have to take into account effect on Jacobian $\frac{d \ln \nu}{d \ln M}$ (since we identify halos by mass, not by v)
- Yields additional term in Δ b, $\propto \frac{\partial \ln \sigma_{\omega \, M}^2(k)}{\partial \ln M}$
- Order unity effect for non-local types of NG!

Updated PBS predictions

Scale-dependent local model

Ratio of simulations / new predictions to previous PBS prediction

Updated PBS predictions

Folded/orthogonal model

Ratio of simulations / new predictions to previous PBS prediction

More "interesting" examples...

- Strongly scale-dependent non-Gaussianity
 - Due to periodic modulation of, or feature in inflaton potential
 - Violating "slow-roll": small effects on P(k), but large non-Gaussianity (in standard single-field inflation!)

More "interesting" examples...

- Strongly scale-dependent non-Gaussianity
 - Due to periodic modulation of, or feature in inflaton potential
 - Violating "slow-roll": small effects on P(k), but large non-Gaussianity (in standard single-field inflation!)

Mode coupling depends strongly on k_s:

$$\omega(k,k_s) \stackrel{k_s \gg k}{=} F(k_s)$$

- Scale-dependence as in local model*: $\Delta b \propto k^{-2}$

Resonant Non-Gaussianity

- Periodic modulation of inflaton potential
 - Modes pass through resonance while sub-horizon
 - $\omega(k, k_s) \propto \sin(C_\omega \ln k_s/k_*)$

Flauger & Pajer

Consider models that pass current CMB constraints

Resonant Non-Gaussianity

- Δb as function of halo mass
 - Oscillations in *mass-dependence* of galaxy clustering

Feature in Inflaton Potential

 Bump or step in the potential generates non-Gaussianity

X. Chen et al

temporarily breaking slow-roll

Feature in Inflaton Potential

• Δb as function of halo mass

- Feature appears at mass scale $M \sim \bar{\rho}_m \, k_f^{-3}$

Constraints on k_f complementary to CMB

Galaxy clustering in relativistic context

- Scale-dependent bias $\propto (k/H)^{-2}$ raises issue of relativistic corrections
- Covariant expression for galaxy density (three-form) simplifies in synchronous gauge
 - Equal time hypersurface = constant-age hypersurface

$$N = \int_{V_{\text{obs}}} \sqrt{-g} \, n_g(x_{\text{true}}^{\alpha}) \frac{1}{a(x_{\text{true}}^0)} \left| \frac{\partial x_{\text{true}}^i}{\partial x_{\text{obs}}^j} \right| d^3 x_{\text{obs}}$$

Yoo et al, 2009 Challinor & Lewis 2011 Baldauf et al 2011 Jeong, FS, Hirata 2011

Galaxy clustering in GR

Galaxy Bias

- Usually assumed on large scales: $\delta_g(\vec{x}) = b \, \delta_m(\vec{x})$
 - Linear, local bias

Galaxy Bias

- Usually assumed on large scales: $\delta_g(\vec{x}) = b \, \delta_m(\vec{x})$
 - Linear, local bias
- However, relation is gauge-dependent
 - $\delta_{\rm g}$ and $\delta_{\rm m}$ transform differently: au o au + T :

Galaxy Bias

- Usually assumed on large scales: $\delta_g(\vec{x}) = b \, \delta_m(\vec{x})$
 - Linear, local bias
- However, relation is gauge-dependent
 - $\delta_{_{\!q}}$ and $\delta_{_{\!m}}$ transform differently:

$$\tau \to \tau + T$$
:

$$\delta_m \to \delta_m - 3aHT$$

$$\delta_g \to \delta_g + b_e aHT, \quad b_e = \frac{\partial \ln \bar{n}_g}{\partial \ln a}$$

Depends on galaxy sample

Galaxy Bias

- Usually assumed on large scales: $\delta_g(\vec{x}) = b \, \delta_m(\vec{x})$
 - Linear, local bias
- However, relation is gauge-dependent
 - $\delta_{\rm g}$ and $\delta_{\rm m}$ transform differently: $\tau \rightarrow \tau + T:$

$$\delta_m \to \delta_m - 3aHT$$

$$\delta_g \to \delta_g + b_e aHT, \quad b_e = \frac{\partial \ln \bar{n}_g}{\partial \ln a}$$

Depends on galaxy sample

In what gauge is galaxy bias linear?

Galaxy Bias

- On large scales, galaxies can know about
 - Local matter density
 - Local age of Universe (linear growth factor)

Galaxy Bias

- On large scales, galaxies can know about
 - Local matter density
 - Local age of Universe (linear growth factor)
- Hence, $\delta_g \propto \delta_m$ on constant-age slices
 - → synchronous gauge
 - Gauge-invariant expression for galaxy density perturbation:

$$\delta_g = b(\tau)[\delta_m - 3aH\delta\tau] - b_e(\tau)aH\delta\tau$$
Perturbation in conf. time w.r.t. constant-age slice

 With NG initial conditions, different areas of the Universe at same age have different power spectra

- With NG initial conditions, different areas of the Universe at same age have different power spectra
- Hence, standard relation, $\delta_g(k) = b(k)\delta_m(k)$

With $b(k) = b_1 + 2f_{\rm NL}(b_1 - 1)\delta_c \mathcal{M}^{-1}(k)$ (for local NG)

applies in synchronous gauge

- With NG initial conditions, different areas of the Universe at same age have different power spectra
- Hence, standard relation, $\delta_g(k) = b(k)\delta_m(k)$ with $b(k) = b_1 + 2f_{\rm NL}(b_1-1)\delta_c\mathcal{M}^{-1}(k)$ (for local NG) applies in synchronous gauge

• Additional terms from volume distortions, redshift perturbations, ... comparable to effective $f_{\rm NL,eff} \lesssim 2$

• Effective f_{NL} from GR corrections

$$Q = 5s/2$$

Magn. bias amplitude

Other ways to look for NG?

- Why not lensing?
 - Lots of information in shear maps

Other ways to look for NG?

- Why not lensing?
 - Lots of information in shear maps
- Lensing estimators not perfectly linear:

$$\hat{\gamma} = \gamma + b \kappa \gamma + \dots$$
 $\hat{\kappa} = \kappa + c \kappa^2 + d |\gamma^2| + \dots$

 Lensing power spectra receive contribution from primordial NG:

$$\Delta C^{\kappa\kappa}(\ell) \propto \int \frac{d^2\ell_1}{(2\pi)^2} B_{\kappa}(\ell_1, |\vec{\ell} - \vec{\ell_1}|, \ell) \times \text{(geometric factors)}$$

κ bispectrum in squeezed limit - projection of matter bispectrum

Unfortunately, effect is very small...

Relative magnitude of contributions to lensing power spectra

From tree-level bispectrum (gravitational collapse)

From local primordial NG

- Two very basic, generic reasons:
 - 1) Projection favors low redshifts → small scales

- Two very basic, generic reasons:
 - 1) Projection favors low redshifts → small scales
 - 2) Central limit theorem: effect is suppressed by

$$L_p/\Delta \chi$$

 $\Delta\chi\sim {
m Gpc}$ width of projection kernel

$$L_p \equiv \int rac{d^2k}{(2\pi)^2} P(k) pprox 75 \, {
m Mpc}$$
 1D coherence length of matter density field

- Two very basic, generic reasons:
 - 1) Projection favors low redshifts → small scales
 - 2) Central limit theorem: effect is suppressed by

$$L_p/\Delta \chi$$

- These apply to any non-linear tracer of any projected density field
 - E.g. shear peaks, IR/UV backgrounds, ...

Summary

- Galaxy clustering offers rich possibilities for testing inflation through non-Gaussianity
 - Scale-dependent bias: non-trivial k- and Mdependence
 - Complementary to CMB
 - NG halo bias on large scales now understood, including GR corrections
 - More work needed for smaller scales...
- On the other hand, weak lensing (in itself) is not a promising probe of NG